Identification of Bartonella Trw Host-Specific Receptor on Erythrocytes
نویسندگان
چکیده
Each Bartonella species appears to be highly adapted to one or a limited number of reservoir hosts, in which it establishes long-lasting intraerythrocytic bacteremia as the hallmark of infection. Recently, we identified Trw as the bacterial system involved in recognition of erythrocytes according to their animal origin. The T4SS Trw is characterized by a multiprotein complex that spans the inner and outer bacterial membranes, and possesses a hypothetical pilus structure. TrwJ, I, H and trwL are present in variable copy numbers in different species and the multiple copies of trwL and trwJ in the Bartonella trw locus are considered to encode variant forms of surface-exposed pilus components. We therefore aimed to identify which of the candidate Trw pilus components were located on the bacterial surface and involved in adhesion to erythrocytes, together with their erythrocytic receptor. Using different technologies (electron microscopy, phage display, invasion inhibition assay, far western blot), we found that only TrwJ1 and TrwJ2 were expressed and localized at the cell surface of B. birtlesii and had the ability to bind to mouse erythrocytes, and that their receptor was band3, one of the major outer-membrane glycoproteins of erythrocytes, (anion exchanger). According to these results, we propose that the interaction between TrwJ1, TrwJ2 and band 3 leads to the critical host-specific adherence of Bartonella to its host cells, erythrocytes.
منابع مشابه
The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and...
متن کاملInfection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction
Type IV secretion systems (T4SSs) are transporters of Gram-negative bacteria that mediate interbacterial DNA transfer, and translocation of virulence factors into eukaryotic host cells. The alpha-proteobacterial genus Bartonella comprises arthropod-borne pathogens that colonize endothelial cells and erythrocytes of their mammalian reservoir hosts, thereby causing long-lasting intraerythrocytic ...
متن کاملDiversifying selection and concerted evolution of a type IV secretion system in Bartonella.
We have studied the evolution of a type IV secretion system (T4SS), in Bartonella, which is thought to have changed function from conjugation to erythrocyte adherence following a recent horizontal gene transfer event. The system, called Trw, is unique among T4SSs in that genes encoding both exo- and intracellular components are located within the same duplicated fragment. This provides an oppor...
متن کاملStructural independence of conjugative coupling protein TrwB from its Type IV secretion machinery.
The stability of components of multiprotein complexes often relies on the presence of the functional complex. To assess structural dependence among the components of the R388 Type IV secretion system (T4SS), the steady-state level of several Trw proteins was determined in the absence of other Trw components. While several Trw proteins were affected by the lack of others, we found that the coupl...
متن کاملMolecular and cellular basis of bartonella pathogenesis.
The genus Bartonella comprises several important human pathogens that cause a wide range of clinical manifestations: cat-scratch disease, trench fever, Carrion's disease, bacteremia with fever, bacillary angiomatosis and peliosis, endocarditis, and neuroretinitis. Common features of bartonellae include transmission by blood-sucking arthropods and the specific interaction with endothelial cells ...
متن کامل